Advanced Features

Command Line Input#

Anyfig offers the functionality to override config-values through command line arguments. Anyfig will throw an error if the user inputs a key that doesn't exist making it possible to override argument, not to define new ones. By not allowing new keys, Anyfig protects against misspellings that can result in silent errors.

import anyfig
@anyfig.config_class
class MyConfig:
def __init__(self):
self.experiment_note = 'Changed stuff'
config = anyfig.init_config(default_config=MyConfig)
# ~~~ ⬇ Command line ⬇ ~~~
# config.experiment_note will contain: A new note
python path/to/file.py --experiment_note='A new note'
# Throws an error due to missing key
python path/to/file.py --xperiment_note='A new note'

Argument Types#

Google's Fire project is used to parse command line arguments' types and validity. It support any Python literals (numbers, strings, tuples, lists, dictionaries, sets). Read more about how Fire handles parsing.

A problem arises when one wants to override a non-literal, like a Pathlib Path, from the command line. Anyfig solves this by parsing the input to a Python literal and use that to create a new object from the class definition of the old value.

import anyfig
from pathlib import Path
@anyfig.config_class
class MyConfig:
def __init__(self):
self.save_directory = Path('output')
config = anyfig.init_config(default_config=MyConfig)
# ~~~ ⬇ Command line ⬇ ~~~
python path/to/file.py --save_directory='other_output'
# config.save_directory will be a Path object with value: other_output
# It's created by wrapping the input string in a Path object: Path('other_output')

Command Line Help#

Help for the config-options are exposed to the command line when the user inputs the --help flag.

import anyfig
from pathlib import Path
@anyfig.config_class
class MyConfig:
def __init__(self):
# Describes the thought behind the experiment
self.experiment_note = 'Changed stuff'
''' Supports
multiline
comments '''
self.save_directory = Path('output')
self.some_values_need_no_comment = 1
# ~~~ ⬇ Command line ⬇ ~~~
python path/to/file.py --help
# ~~~ ⬇ Output ⬇ ~~~
Available config classes ['MyConfig']
Current config is 'MyConfig'. Set config with --config=OtherConfigClass
--experiment_note (str): Describes the thought behind the experiment
--save_directory (PosixPath): Supports
multiline
comments
--some_values_need_no_comment (int):

Multiple Config Classes#

Sometimes it's useful to have multiple config-classes. Perhaps one config for every main script or one config for normal use and one for debugging. The ability to create multiple config-classes is very powerful and essential to Anyfig.

One can choose which config-class to use via the command line. If a config-class is not supplied, it will default to the config-class given in the anyfig.init_config function.

import anyfig
@anyfig.config_class
class MyConfig:
def __init__(self):
self.experiment_note = 'Changed stuff'
@anyfig.config_class
class SecondConfig:
def __init__(self):
self.experiment_note = 'Number 2'
self.anyfig_tip = 'Configs can contain different values from each other'
# The "default_config" argument decides which class is used to create the config
config = anyfig.init_config(default_config=MyConfig)
# ~~~ ⬇ Command line ⬇ ~~~
# config.experiment_note will contain: Changed stuff
python path/to/file.py
# config.experiment_note will contain: Number 2
python path/to/file.py --config=SecondConfig
# It's possible to override config-classes and values at the same time
# config.experiment_note will contain: A new note
python path/to/file.py --config=SecondConfig --experiment_note="A new note"

Inheritance#

What's the object oriented way to become wealthy?💰 Inheritance

For situations where multiple config-classes are similar to one another it often makes sense to use inheritance to avoid code duplication.

import anyfig
import logging
@anyfig.config_class
class NormalConfig:
def __init__(self):
self.logger = logging.getLogger('my-app')
# ... More config values
@anyfig.config_class
class DebugConfig(NormalConfig):
def __init__(self):
super().__init___() # Inherits all attributes from NormalConfig
self.logger.setLevel(logging.DEBUG)
config = anyfig.init_config(default_config=NormalConfig)

Modular Configs#

For projects where the configuration grows large it helps to modularize the config-values. Anyfig allows for nested config-classes to reduce code duplication and increase code readability.

import anyfig
@anyfig.config_class
class MainConfig:
def __init__(self):
self.experiment_note = 'Changed stuff'
self.module = ModuleConfig() # Yo dawg!
@anyfig.config_class
class ModuleConfig:
def __init__(self):
self.anyfig_tip = 'Config-classes can be used as parts or wholes'
config = anyfig.init_config(default_config=MainConfig)
# ~~~ ⬇ Command line ⬇ ~~~
# It's possible to override nested values
python path/to/file.py --module.anyfig_tip="A new tip"

Constraining Config-Values#

To avoid unintended behaviours its good practice to validate the config. This can be done by checking that the config-values are the correct types and within a subset of allowed values.

Types#

Anyfig assures that a config-value will have the correct type if it's declared via the anyfig.field function.

The field serves as an interface that defines the allowed type for that particular config-value.

That config-value is required to be overridden which allows the developer to e.g. enforce that certain config-values are supplied through the command line input.

import anyfig
from pathlib import Path
@anyfig.config_class
class MyConfig:
def __init__(self):
# Define allowed values
self.save_directory = anyfig.field(Path)
# Set value directly, in subclass or from command line input
self.save_directory = Path('output') # OK
self.save_directory = 'output' # Error. Value is not correct type

More complex types are supported through Python's typing module. This makes it possible to specify that a config-value should be a list of ints, written as typing.List[int] or any other schema supported by the typeguard package that performs the type checking.

import anyfig
from pathlib import Path
import typing
@anyfig.config_class
class MyConfig:
def __init__(self):
# Define allowed values
self.save_directory = anyfig.field(typing.Union[Path, str]) # Path or String
# Set value directly, in subclass or from command line input
self.save_directory = Path('output') # OK
self.save_directory = 'output' # OK

Values#

Validating the type for config-values is a great start but can't protect against unallowed values of that type. For example, if a config-value controls the age of a person, a negative number could pass the type test whilst still being nonsensical.

By allowing developers to define their own tests for the config-values within Anyfig, config-errors are caught in the setup phase with a clear error message instead of creating bugs downsteam.

It also clearly communicates the allowed values in contrast to a json config-file where one has to also read any validation code to understand which options are allowed.

this_file.py
import anyfig
from pathlib import Path
@anyfig.config_class
class MyConfig:
def __init__(self):
# Define tests
file_exists = lambda new_value: new_value.exists()
self.python_file = anyfig.field(tests=file_exists)
# Set value directly, in subclass or from command line input
self.python_file = Path('this_file.py') # OK
self.python_file = Path('other_file.py') # Error. File doesn't exist
this_file.py
import anyfig
from pathlib import Path
@anyfig.config_class
class MyConfig:
def __init__(self):
# Define tests
file_exists = lambda new_value: new_value.exists()
allowed_files = [Path('this_file.py'), Path('other_file.py')]
file_allowed = lambda new_value: new_value in allowed_files
file_tests = [file_exists, file_allowed]
self.python_file = anyfig.field(tests=file_tests)
# Set value directly, in subclass or from command line input
self.python_file = Path('this_file.py') # OK
self.python_file = Path('other_file.py') # Error. File doesn't exist
self.python_file = Path('anyfig.txt') # Error. File exist but isn't allowed

Constants#

It's possible to mark attributes as constants to avoid that they are overridden in a subclass or from command line input. Anyfig handles constants as a special case of anyfig.field(tests=mytest) where the mytest compares object equality via == or the is operator.

this_file.py
import anyfig
from pathlib import Path
@anyfig.config_class
class MyConfig:
def __init__(self):
self.PYTHON_FILE = anyfig.constant(Path('this_file.py'))
# Set value directly, in subclass or from command line input
self.PYTHON_FILE = Path('this_file.py') # Ok. Compares with == by default
self.PYTHON_FILE = Path('other_file.py') # Error
@anyfig.config_class
class StrictConfig:
def __init__(self):
self.PYTHON_FILE = anyfig.constant(Path('this_file.py'), strict=True)
# Set value directly, in subclass or from command line input
self.PYTHON_FILE = Path('this_file.py') # Error. Compares with 'is'
self.PYTHON_FILE = Path('other_file.py') # Error

Target Classes#

Config-classes also support configuring objects with dependencies that are not available at config initialization. Connect the config-class to any callable via the "target" argument.

import anyfig
from datetime import datetime
@anyfig.config_class(target=datetime)
class MyConfig:
def __init__(self):
self.year = 1996 # Specify the values that should be configurable
self.month = 12
config = anyfig.init_config(default_config=MyConfig)
build_args = dict(day=13) # Dict of non-configurable values
date = config.build(build_args) # Calls the target with both config-values and build_args
print(date) # 1996-12-13 00:00:00
import anyfig
class DataProcesser:
def __init__(self, algorithm, data):
self.algorithm = algorithm
self.data = data
def solve(self):
# Use algorithm & data
pass
@anyfig.config_class(target=DataProcesser)
class MyConfig:
def __init__(self):
self.algorithm = lambda x: x + 1
config = anyfig.init_config(default_config=MyConfig)
data = [1, 2, 3] # Some complex data that can't be put into the config
build_args = dict(data=data)
data_processor = config.build(build_args)